The magnetic structure of surges in small-scale emerging flux regions
نویسندگان
چکیده
Aims. To investigate the relationship between surges and magnetic reconnection during the emergence of small-scale active regions. In particular, to examine how the large-scale geometry of the magnetic field, shaped by different phases of reconnection, guides the flowing of surges. Methods. We present three flux emergence models. The first model, and the simplest, consists of a region emerging into a horizontal ambient field that is initially parallel to the top of the emerging region. The second model is the same as the first but with an extra smaller emerging region which perturbs the main region. This is added to create a more complex magnetic topology and to test how this complicates the development of surges compared to the first model. The last model has a non-uniform ambient magnetic field to model the effects of emergence near a sunspot field and impose asymmetry on the system through the ambient magnetic field. At each stage, we trace the magnetic topology to identify the locations of reconnection. This allows for field lines to be plotted from different topological regions, highlighting how their geometry affects the development of surges. Results. In the first model, we identify distinct phases of reconnection. Each phase is associated with a particular geometry for the magnetic field and this determines the paths of the surges. The second model follows a similar pattern to the first but with a more complex magnetic topology and extra eruptions. The third model highlights how an asymmetric ambient field can result in preferred locations for reconnection, subsequently guiding the direction of surges. Conclusions. Each of the identified phases highlights the close connection between magnetic field geometry, reconnection and the flow of surges. These phases can now be detected observationally and may prove to be key signatures in determining whether or not an emerging region will produce a large-scale (CME-type) eruption.
منابع مشابه
Solar surface emerging flux regions: a comparative study of radiative MHD modeling and Hinode SOT observations
We present results from numerical modeling of emerging flux regions on the solar surface. The modeling was carried out by means of 3D radiative MHD simulations of the rise of buoyant magnetic flux tubes through the convection zone and into the photosphere. Due to the strong stratification of the convection zone, the rise results in a lateral expansion of the tube into a magnetic sheet, which ac...
متن کاملPhotospheric and Subphotospheric Dynamics of Emerging Magnetic Flux
Magnetic fields emerging from the Sun’s interior carry information about physical processes of magnetic field generation and transport in the convection zone. Soon after appearance on the solar surface the magnetic flux gets concentrated in sunspot regions and causes numerous active phenomena on the Sun. This paper discusses some properties of the emerging magnetic flux observed on the solar su...
متن کاملSOHO/SUMER Observations of Prominence Oscillation Before Eruption
Context. Coronal mass ejections (CMEs), as a large-scale eruptive phenomenon, often reveal some precursors in the initiation phase, e.g., X-ray brightening, filament darkening, etc, which are useful for CME modeling and space weather forecast. Aims. With the SOHO/SUMER spectroscopic observations of the 2000 September 26 event, we propose another precursor for CME eruptions, namely, long-time pr...
متن کاملMagnetic fields and large scale structure in a hot Universe III . The polyhedric network
We provide a new tool to interpret the large scale structure of the Universe. As suggested in Paper II, energy density filaments could have been produced by subjacent magnetic flux tubes when the Universe was dominated by radiation. In more recent time epochs, small scale filaments have evolved in a complicated way, but large scale filaments have probably survived and should be identified with ...
متن کاملComparative Harmonic Loss Measurement of Grain Oriented and Non-oriented Magnetic Sheets Using a High Precision Single Sheet Tester
Abstract: Local flux may be distorted in many regions of core, although total flux is usually sinusoidal. When attempting to predict the loss distribution in materials operating under localized distorted flux conditions, which occur in machines and transformer cores, it is essential that proper account of the waveform be taken. Moreover for development of new magnetic materials and generation ...
متن کامل